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A numerical method is described, based on the hodograph formulation, for analysing 
inviscid, free-surface flows over a periodic wall. An efficient implementation of the 
wall boundary condition results in a straightforward method, accurate for a wide 
range of bottom undulation heights and flow parameters. It is demonstrated that a 
series of resonances is possible between the bottom undulations and the free surface. 
The steady, free-surface profiles are accurately calculated for a wide range of current 
velocities and are shown to be significantly dimpled by higher harmonics. A study of 
the flow field indicates that  the free-surface shape strongly affects the velocities close 
to the wall, leading to distributions which change dramatically with current velocity. 
Some implications of the new results on the phenomena of wall dissolution or 
material deposition, Bragg scattering of surface waves and sediment transport in 
rivers. are discussed. 

1. Introduction 
An important class of problems in fluid mechanics involves flow over a wavy wall 

of a liquid bounded by a free-surface or fluid interface. Such flows, occurring both in 
nature and in chemical processes, are usually coupled with various transport 
phenomena, whose rate is strongly affected by the details of the flow field. Typical 
examples are river flow over an erodible bed, leading to  sediment transport and 
deposition, and various processes involving heat and mass transfer in chemical 
engineering. 

The existence of a free surface whose location is not known a priori poses severe 
mathematical difficulties, making the problem highly nonlinear. One simplification, 
customary in the study of natural flows and of plausible validity for thick films, is 
the neglect of viscosity. This approach, adopted in the present work, is known to 
provide an accurate description of free-surface flows. To this end it suffices to 
mention the recent comparison of Dommermuth et al. (1988), which demonstrated 
the agreement between experimental observations of plunging breakers and 
numerical computations based on potential theory (e.g. Longuet-Higgins & Cokclct 
1976). 

The specific problem considered in this article is the steady, inviscid flow of a liquid 
stream with uniform current velocity, over a periodic solid wall of given shape. 
Previous studies on the topic involved linear (Kennedy 1963; Reynolds 1965) and 
weakly nonlinear analysis of the steady flow (Miles 1986). In the present study a 
numerical computation is performed, valid for wall undulations of finite amplitude 
and free-surface waves of any steepness. Specifically addressed are the effects of 
current velocity and disturbance height on the free-surface morphology and the flow 
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structure, with emphasis on the velocity distribution along the wall. The results 
include exact calculation of the free-surface profiles, which occasionally exhibit a 
complexity not intuitively evident. The flow field close to the wall is shown to change 
drastically with current velocity, a result with important, implications for sediment 
transport and wall dissolution phenomena. 

The related inverse problem, which involves constructing free-surface solutions 
with corrugated streamlines, has been studied by - among others ~ Richardson 
(1920) and John (1953) (for a review see Wehausen & Laitone 1960). These results are 
evidently less useful, since t,hey involve very specific boundary shapes which, in 
addition, arc dictated by the solution itself. A family of steady flows discovcrcd by 
John (1953) has been calculated in the present work as a direct problem in order to 
test the accuracy of the numerical scheme. 

The flow of interest is analysed in the hodograph formulation (devised by Stokes 
1880) whereby the location of a point in the fluid domain is cast as a Fourier series 
in the velocity potential $ and the stream function $. This approach allows direct 
application of the kinematic boundary conditions and exhibits better convergence 
characteristics for steep profiles than the physical formulation (Saffman & Yuen 
1982). Although the present work involves only gravity waves, the numerical 
method is generalized with the inclusion of surface tension. The implementation of 
the bottom boundary condition is a non-trivial task and an interesting Fourier- 
inversion formulation is adopted to assure proper convergence. 

The problem is formulated in $2 and the numerical method developed and 
evaluated in $3. The free-surface morphology is examined in $4 and the flow field in 
$ 5 .  Finally: $6 contains some concluding remarks. 

2. Formulation of the problem 
Periodic, stationary waves are considered on the free surface of a liquid, which is 

flowing over a periodic boundary. The liquid is taken to be incompressible and 
inviscid and the motion irrotational. Solutions are obtained for two-dimensional 
waves, with wavelength equal to that of the bottom wall disturbance and in phase 
(or 180' out of phase) with it. Units of length, mass and time are chosen so that the 
wavelength L = 27c, the fluid density p = 1 and the gravitational acceleration y = 1. 
Equivalently, all lengths are non-dimensionalized with the wavenumber k and the 
velocities are Proude numbers using k-' as characteristic length. 

The flow is sketched in figure 1.  Rectangular coordinates (x, y) are chosen such that 
the x-axis is horizontal and the y-axis directed vertically upward. The interface is 
located at  y = 11 and the origin is such that the mean elevation ?j is zero. The bottom 
boundary consists of sinusoidal disturbances of amplitude a. Its average elevation, 
-D, in the above coordinate system, is taken as the mean depth of the liquid. The 
stream is moving with ambient velocity U,  defined as the horizontal velocity 
averaged over one cycle on any fixed height within the liquid. With the above 
formulation the equations that need to be satisfied are Laplace's equation in the 
domain, the kinematic and dynamic boundary conditions on the free surface and the 
no-penetration condition on the bottom wall. 
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FIQURE 1 .  Sketch of the flow considered. 

3. Numerical method 
3.1. Hodograph formulation 

A velocity potential 4 and a stream function @ are considered for the liquid and the 
following complex variables are defined : 

z = x+iy, w = $+i@. (3.1) 
With the above definitions, z can be expanded as a Fourier series in w, truncated to 
order N :  

where the velocity field is given by 

and A,, Bj, A,, B, are in general complex. Considering only waves symmetric about 
the crest, applying the definition of the ambient velocity U and splitting into real and 
imaginary parts, the following are derived : 

N 

x = c+Z (a,d@/'--b 1 e-'+'')sin(j(), ( 3 . 4 ~ )  
,-I 

N 

y = ?- H + (a,  $*I' + b, e+*tu) cos (jg), 
lJ f-1 

(3.4b) 

whcre aj ,  bj and H are real and c = $ / U .  The strcam function is taken as @ = 0 along 
the free surface and @ = Q on the wall, where IQI is the volume flow rate per unit 
span. 

(3.5) 
@ = 0  on y = q ,  
@ = Q on y = Dfacosx .  

The term H is calculated by requiring that the average free-surface elevation be zero. 
The average elevation is found by substituting $ = 0 in (3.4b) and integrating over 
onc wavelength : 

I 

( 3 . 6 ~ )  
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Setting i j  = 0 gives 
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l N  
H = - C j ( ~ i - b ; ) .  

2 j-1 
(3.6b) 

The term d = Q/U is an equivalent depth and in general differs from the mean depth 
D. Thcsc quantities are related by calculating the average bottom elevation (same 
procedure as (3 .6a,  b ) ) ,  subtracting i t  from the average free-surface elevation and 
setting the difference equal to ID1 : 

(3.7) 
l N  

2,-1 
- d  + - j[a;( 1 - e2jd) - b;( 1 - e-2jd )I = PI. 

3.2. Numerical solutionperformance 

The equations to be satisfied in the above formulation are the dynamic boundary 
condition along the free surface and the geometric requirement that the streamline 
$ = Q coincide with the bottom wall. Applying Bernoulli’s equation, the dynamic 
boundary condition is brought to the form 

- k 2 + ~ - ~ R p 1  = B,  (3.8) 

where K is a dimensionless surface tension, equal to 4n2cr/pgL2, cr is the dimensional 
surface tension and B is Bernoulli’s constant. 

The term R is the radius of curvature of the interface and its inverse equals 

(3.9) 

where x’, y’ etc. arc derivatives with respect to < of the interface coordinates 
x, y. Equation (3.8) is discretized by N +  1 points from crest to trough using ct = 
(i- 1 )  n / N ,  i = 1,  .. ., N+ 1. 

The geometric requirement for the bottom wall can be formulated as 

(Y)$-Q -D = cos (X)+Q’ (3.10) 

where x, y are derived from (3.4a, b )  by substituting pb = Q. Equation (3.10) could in 
principlc bc discretized to provide the rest of the equations needed to define the 
unknowns a,, b,,j = 1 ,  . . ., N .  Such a formulation, however, was pursued and gave 
meaningless solutions. Indeed, an anomalous increase was observed in the amplitudes 
of the last few harmonics which persisted with increasing values of N .  Furthermore, 
the results depended on N .  It was speculated that the discretization along both the 
bounding wall and the free surface permitted the intrusion of physically meaningless 
high-frequency harmonics, which would be excluded if (3.10) was somehow satisfied 
at every point along the boundary. It will be noted that application of the hodograph 
formulation with a flat wall, where (3.10) can be implemented analytically, never met 
with similar difficulties. 

To circumvent the problem the following procedure is pursued. Equation (3.10) is 
considered as a Fourier series in cosje of the form 

N 

(a, ejd + b, e-ld) cos j< = a cos (x)$+. 
j=l 

(3.11) 

The Euler-Fourier formula for finding the coefficients of the series is applied, giving 

[ a c ~ s ( x ) + ~ ] ~ o s j c d c ,  j = 1 ,..., N .  n: 
(3.12) 
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FIGURE 2. The maximum of the  residuals at non-nodal points versus the  magnitude of the  last 
Fourier coefficient. A strong correlation is shown to hold for the entire range of bottom 
undulations. 

The above N equations are used to closc the system. Together with the N+1 
equations resulting from the discretization of (3.8), they provide a system of 2N+ 1 
equations in the 2N+ 1 unknowns a,, ..., a,, b,, . .., b,, B. If the mean, instead of the 
equivalent depth is considered as the input parameter (as is done in the present 
work), d is introduced as an additional unknown and (3.7) is the last equation needed. 

The system of equations is solved by Newton’s method. Typically, three to four 
iterations are needed to  achieve convergence. Accuracy is tested by the independence 
of the results of the value of N and the error is monitored by the magnitude of the 
last Fourier coefficient. As an additional test, the residuals a t  non-nodal points were 
checked for representative runs. The results, plotted in figure 2, indicate that the 
maximum deviations scale very well with the magnitude of the last Fourier 
coefficient. 

The method works extremely well for a wide range of parameter values. Away 
from resonances a few harmonics are sufficient to  describe the flow. Higher 
resolution, however, is needed near resonance and with increased bottom steepness. 
The bulk of the results presented in this work were derived using 16 or 24 harmonics. 

3.3. Comparison with exact solutions 

John (1953), considering two-dimensional flows described by a complex velocity 
potcntial F(x)  ( x  = x+ iy), discovered the following solution family which corresponds 
to  flow with corrugated streamlines : 

9 z = - T + A  eivT 
V I (3.13) 
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FIGURE 3. Comparison between numerical computations (circles) and analytic solution (lines) 
based on John’s (1953) inverse method. 

Term g is the gravitational constant, v is real-positive and the free surface is 
recovered for real values of 7 .  For A < g/v2  the surface is a simple periodic curve of 
amplitude A and wavelength L = 2pg/v2. Branch points occur at the positions 

z , =  ( n + i ) L + -  1-log- L ,  n € N  
27t ( 2 f A )  

(3.14) 

and any streamline above or through the branch points can be taken as the bottom 
surface. 

The above steady flows are recalculated in the present work as a direct problem in 
order to test the accuracy of the proposed numerical scheme. The ambient current 
velocity used in the numerical computations is found (by integration of the velocity 
vector along the free surface and use of Stokes theorem) to  equal 

(3.15) 

The mean depth D corresponding to the analytic solutions is also calculated and 
representative runs are performed. Figure 3 shows the free-surface profiles calculated 
analytically and numerically for 27tAIL = 0.1, 0.3 and 0.5, using as the bottom the 
streamlines through the branch points. The agreement observed demonstrates the 
accuracy of the numerical scheme used. 

4. Free-surface profiles 
The waviness of the solid wall causes deflection of the streamlines, which affects 

the shape of the free surface. In the present section, flow without capillary forces is 
analysed, concentrating on the effect of disturbance amplitude and current velocity. 
Examining the morphology of the free surface is certainly of interest from a 
fundamental standpoint. Additionally, it serves as an input for a more detailed 
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consideration of the structure of the flow, a task which is undertaken in thc next 
section. The results which follow might also have some bearing on the approach to 
Bragg scattering of surface waves over a periodic bottom topography (Davies &, 
Heathershaw 1984; Hara & Mei 1987), as is discussed in more detail in $6. 

Before presenting the numerical results it is instructive to recall some conclusions 
of linear theory. The linearized problem for small wall amplitude has been considered 
by Reynolds (1965). In the notation of figure 1, the following free-surface profile is 
obtained ; 

u2 
cosh kD(klgU2-  tanh kD) ' n(x) = a cos kx (4.1) 

The free-surface, therefore, is sinusoidal with height that is not necessarily smaller 
than the wall disturbance (contrast with creeping flow ; e.g. Pozrikidis 1988). The 
perturbed flow field has a singularity a t  the zero of the denominator of (4.1), which 
corresponds to a current velocity 

qes = g / k  tanh kD (4.2) 

reminiscent of the dispersion relation for water waves. This indicates a resonance 
between a free-surface wave (stationary, riding on a current) and the bottom forcing. 
Crossing the singular current velocity is accompanied by a jump in the phase of the 
free-surface wave. Small currents create surface waves 180" out of phase with the 
bottom disturbance, whereas large currents lead to surface waves in phase with the 
bottom wall. 

Miles (1986) showed that the singularity may be removed by including second- 
order effects. His analysis is limited to  the neighbourhood of the resonance, positing 
a scaling of the wall amplitude a, relative to the wave amplitude a of the order a = 
O(a3).  Furthermore, the scaling aN = O(aN)  is assumed for the wave harmonics. 
According to this weakly nonlinear analysis, the resonance curve of wave amplitude 
versus current velocity is triple-valued in some range of current velocities. The curve 
comprises two turning points, with the intermediate branch being always unstable. 
It should also be noted that excluding phenomenological damping, as is the case with 
the present work, moves one of the turning points to  infinity. 

The numerical method developed is presently applied to study the free-surface 
configuration for a wide range of parameter values. The goal is to  accurately describe 
steep waves as well as investigate the possibility of different free-surface 
configurations, by relaxing the scaling assumed in Miles' weakly nonlinear analysis. 

A dimensionless water depth kD = 0.5 is chosen as a case study. A bottom 
disturbance with steepness kol = 0.001 is studied first. The numerical results for this 
small amplitude provide a proper framework for comparisons with weakly nonlinear 
theory. The magnitude of the free-surface wave is examined in a quantitative fashion 
by constructing the resonance curve of wave amplitude versus current velocity. 
Velocity U is used as the continuation parameter up to the turning point of the 
resonance curve. Beyond this point the formulation is recast, with U as an unknown 
and the wave steepness, ka, as the input parameter. The results are illustrated in 
figure 4, where close agreement between the numerical and analytical solution is 
observed for waves of small to intermediate height. It is interesting to  note that 
discrepancies occur for ka = O(0. l ) ,  which corresponds to the limit of validity of the 
scaling a = O(a3) assumed by Miles. The numerical results demonstrate a steeper 
ascent of the resonance curve than predicted by second-order analysis. This 
observation is actually valid for higher wall corrugations as well (see figure 5 ) .  
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FIGURE 4. Part of the resonance curve of wave amplitude versus current velocity for undulations 
with steepness ka = 0.001. Close agreement is observed in the neighbourhood of t.he resonant 
velocity. 

0.2 

0 
-( 

. . . . Analytical curve 
- Numerical results 

i0 

FIGURE 5. The resonance curve of nave amplitude versus current velocity for undulations with 
steepness ka = 0.01. 

Results for bottom disturbance with steepness ka = 0.01 are presented next. The 
disturbance is still ‘small’ but serves to indicate an unexpected versatility of profiles 
emanating from higher-order resonances. The resonance curve of wave amplitude 
versus current velocity is again constructed and illustrated in figure 5.  The numerical 
results are seen again to deviate from the analytic approximation around the main 
resonance. Even more important, triple-valued solution branches are also evident in 
the ncighbourhood of U x 0.91Ures and U x 0.81Ure,. These current velocities 
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FIGURE 6 Typical surface profiles for current velocities in the neighbourhood of the second 
resonance. Kote that ,  since the profiles are always symmetric about the crest or trough, only one 
half is presented (x = 0 t o  x = - $ )  here and in the following figures. The dimensionless velocity Ci 
is a Froude number, using i l k  as characteristic length. Also note that  the resonant velocity from 
linear theory corresponds t o  17 = 0.680. 

wrrcspond to the phase speed of free-surface waves with wavelengths half and one 
third of the wall disturbance, respectively. The singularities arc thus due to 
resonances of the free wave with higher harmonics of the boundary forcing. 
Evidently there exists a whole class of such resonances, consisting of the 
superharmonics of the fundamental disturbance. It is noted though that, as the 
harmonic of interest increases in order, the dimensionless depth kD increases as well, 
approaching asymptotically the deep-water limit. The resonances therefore are 
expccted to become increasingly weaker. This is evident in figure 5, where the range 
of current velocities over which very steep free-surface waves exist is observed to 
shrink with increasing order of the resonance. 

A profound change in the morphology of the free surface takes place for current 
velocities around the resonant values. This is illustrated in figure 6, where free- 
surface profiles are plotted for current velocities around 0.91 U,,,. It is evident that  
a strong second harmonic has developed, resulting in a dimpled profile. The dimple 
is located a t  the crest in the solution branch coming from small current velocities and 
a t  the trough in the order one. 

Increasingly complex profiles appear in the neighbourhoods of the higher 
rcsonances, typical examples of which are plotted in figure 7. The superharmonics 
deform the sinusoidal wave profile for a considerable range of current velocities, and 
dominate the main harmonic close enough to the resonance. It should be noted, 
however, that for no current velocity in the present work did the amplitude of the 
first harmonic reduce to zero, so that a gradual transition from a wave with 
wavelength L to one with did not take place. The possibility, therefore, of a 
subharmonic bifurcation, similar to the one reported for capillary-gravity water 
waves (Chen & Saffman 1979) is not supported. 

As a final example of the capabilities of the computational scheme, some free- 
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FIGURE 7 .  Typical surface profiles for current velocities around the third resonance. An 
increased degree of complexity is evident. 
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FIGURE 8. Free-surface profiles for bottom steepness kn = 0.05. With increasing disturbance 
height, such highly dimpled profiles are observed for a wider range of current velocities. 

surface profiles for bottom disturbance with steepness 0.05 are presented in figure 8. 
One consequence of the increased modulation height is the extension of the current 
velocity range over which superharmonics are evident on the wave profiles. Highly 
dimpled profiles, like the ones presented in figure 8, are now observed for a significant 
range of velocities. 

The shape of the resonance curve, with continuously increasing wave amplitude 
poses the question of a geometric limit. Numerical evidence for the existence of such 
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FIGURE 9. Large-amplitude profiles for wall steepness ka = 0.001. The approach to a 
geometrical limit is evident. 
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FIGURE 10. Profiles with increasing amplitude along the first resonance curve, for ka = 0.01. 

a limit is presented in figures 9 and 10. For wall disturbance with steepness k a  = 

0.001, figure 9 indicates that a sharp corner develops at the crest, as one moves along 
the resonance curve. The shape is very close to Stokes free-surface wave, which is 
evidently the asymptotic limit for k a - 2 0 ,  U+ Ure,. Figure 10 shows steep waves 
along the first resonance branch, for k a  = 0.01. The profiles again tend to peak a t  the 
crest. Note however that a dimple a t  the trough persists even for current velocities 
considerably distant from the second-order resonance. 
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5. Structure of the flow 
In the previous section, the amplitude and shape of the free surface was examined 

as a function of current velocity, for wall disturbances of various heights. The present 
section elucidates some aspects of the flow structure, focusing on the velocity 
distribution along the wall (slip vclocity). 

The slip velocity, calculated from the present inviscid approximation, provides 
essential information for understanding processes that  take place close to  the wall. 
Its distribution and rate of changc dictate the velocity profile across the boundary 
layer as well as its thickness. It is, therefore, of central importance in problems 
involving heat or mass transfer. The problem of sediment transport and dcposition 
along a river is also relevant to the present study, since the sediment carrying ability 
of the flow is generally related (mostly empiric.ally) to  the local vclocity field close to  
thc river bottom (Iteynolds 1965; Engelund & Fredsae 1982). 

Before presenting numerical results for the intermediate range of current vclocities, 
it is instructive to  consider the asymptotic limit of very low flow rates. For current 
velocities approaching zero the free surface is slightly deflected from horizontal and 
the flow field along the bottom wall is determined predominantly by the wall shape 
itself. This is demonstrated in figure 11 for one mild and one steep wall disturbance. 
The slip velocity varies in phase with wave height, as  is intuitively expected from a 
consideration of the Bernoulli cffcct. Weakly nonlinear theory predicts that, by 
increasing the current velocity, this variation of the bottom velocity persists and 
becomes more pronounced. This is so because thc free-surface waves, whose height 
increases with the approach to the rcsonance velocity IT,,,,, are 180' out of phase with 
the wall disturbance and thus amplify thc Bernoulli effect. Inclusion of higher-order 
effects, as in the numerical results t o  be presented next, considerably alters this 
picture. 

Slip velocity distributions for some current velocities 17 < Ure5 and wall 
disturbance with steepness ka = 0.01 are depicted in figure 12. One striking result is 
that  the curvc loses the sinusoidal form, with the velocity maximum shifting in some 
cases downstream from the crest, and the minimum upstream in others. Examination 
of the pertinent free-surface profiles (figures 6 and 7 )  reveals that  the velocity 
extrema are associated with variations of the liquid film thickness imposed by the 
shape of the free-surface profile. It should indeed bc noted that  in all our calculations, 
both the free-surface and the bottom tangent velocities roughly wale with the liquid 
depth. Consequently, knowing the surface profile enables one to cstimatc the slip 
vcloeity by a simple mass balance. 

Numerical results for the other asymptotic. limit, namely vcry high flow rates, are 
in agreement with the second-order theory and are hence briefly summarized. For 
very high current velocities. associated with insignificant surface deflection, the slip 
velocity distribution is in phase with the bottom height. As the current velocity 
decreases approaching the resonant value, the height of the free-surface profile 
increases far bcyond that  of the bottom undulations, while it remains in phase with 
them. Consequently, the slip velocity distribution presents maxima on the wall 
troughs and minima on the crests. Evidently, thcrc exists an intermediate range of 
current velocities over which the slip velocity is almost uniform along the periodic 
wall. 

Finally, the question is examined of whether the bottom undulations have a net 
effect on the volumetric flow rate of the liquid stream. Thc volumetric. flow rate can 
be easily derived from the numerical results. since the equivalent depth d is part of 
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FICL-RE 1 Velocity distribution along the bottom wall, for current velocity approac..ing zero. The 
variation of the slip velocity, U,, from the ambient, C. scales with the wall steepness, as predicted 
by a local Bernoulli effect. 
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F I G ~ R E  12. Wall velocity distributions for subresonant current velocities and k a  = 0.01. 

the solution. The flow rate, then, is calculated as Q = Uld I and compared with Qo = 
q D l ,  which corresponds to undisturbed flow with the same average liquid depth. 
Some results are shown in figure 13 for ku = 0.01 and 0.10. They indicate that the 
bottom waves always lead to a decrease in the flow rate which, however, becomes 
significant only for current velocities around the resonant ones. This change in the 
flow rate turns out to be an O(uz) effect, so it might be important for wall undulations 
that are steep enough. This phenomenon could have interesting implications as in the 
case when flow over undulations is preceded by flow over a flat bottom. The present 
approach then needs to be coupled with a viscous force balance, providing a relation 
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FIGIJRE 13. The volumetric flow rate as a function of current velocity, for undulations with 
steepness ka = 0.01 and 0.10. 

between the flow-driving force and the film height and average velocity, the last two 
being considcred independent variables in the inviscid approach. Such an analysis, 
however, is beyond the scope of this work. 

6.  Concluding remarks 
A numerical method has been described, based on the hodograph formulation, for 

analysing inviscid, free-surface flows over a periodic bottom. An efficient im- 
plementation of the wall boundary condition resulted in a straightforward method, 
accurate for a wide range of bottom undulation heights and flow parameters. 

A number of interesting results emerged from the present work. It was 
demonstrated that a series of resonances is possible between the bottom undulations 
and the free surface. The steady, free-surface profiles were accurately calculated for 
a wide range of current velocities and were shown to be significantly dimpled by 
higher harmonics. This result could have some bearing on the approach to Bragg 
scattering of surface waves over periodic bottom topography. I n  particular, the 
effect of an ambient current velocity on the reflective characteristics of undular 
bottom has been studied in a linearized context (Kirby 1988), where it is assumed 
that the bottom disturbance contributes to the resonant triad a stationary wave of 
the same wavelength as the topography. The present study shows that a considerably 
more complex surface structure is possible for some ranges of current velocity, even 
for mild slopes of the bottom undulations. This result implies that waves with 
wavelength equal to a fraction of the fundamental will also be reflected to a 
considerable extent. The authors of the present work, however, are unaware of any 
experiments concerning current effects on Bragg resonance, which could test the 
above prediction. 

A study of the flow field indicated that the free-surface shape strongly affects the 
velocities close to the wall, leading to distributions which change dramatically with 
current velocity. These results could have implications for the phenomenon of 
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sediment transport in rivers. Although a detailed examination of the phenomenon is 
beyond the scope of the present work, it is interesting to note that our new results 
concern the subcritical flow regime, which was proven the most difficult to  model by 
linear potential theory (Engelund & Fredsple 1982). 

One particular observation, concerning the velocity distribution close to the 
bottom for subcritical currents, is the occasional shift of the slip velocity extrema 
from the crest and trough of the disturbance. It is expected that this shift will have 
a pronounced effect on the evolution of the wall shape in phenomena involving wall 
dissolution or material deposition. It is envisioned that modelling efforts could 
involve a quasi steady-state approximation, whereby the flow field calculated by the 
present methods (possibly supplemented by a boundary-layer analysis) for an initial 
bottom configuration would be substituted in a diffusion equation to derive the 
evolution of the configuration over a small time interval, and so on. Although 
quantitative assessment should await this or a similar analysis, it can be speculated 
that the wall evolution will be fairly complicated and will result in a moving, rather 
than a stationary, bottom configuration. 
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Technology of Greece and by the Commission of European Communities (under the 
programme VALOREN). 
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